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ABSTRACT 

It is shown that a mixing Markov chain is a unilateral or one-sided factor of 

every ergodic process of equal or greater entropy. This extends the work of 

Sinai, who showed that the result holds for independent processes, and the 

work of Ornstein and Weiss, who showed that the result holds for mixing Mar- 

kov chains in which all transition probabilities are positive. The proof exploits 

the Rothstein-Burton joinings-space formulation of Ornstein's isomorphism 

theory, and uses a random coding argument. 

1. I n t r o d u c t i o n  

Let (X, T, .A, #) be a dynamical system, with .A a a-algebra of subsets of X, # 
a non-atomic probability measure defined on .A, and T a bimeasurable map of 

X onto itself that preserves #. Taking a generating partition P and viewing the 

components of P as corresponding to "symbols", we may regard X as the set of 
doubly-infinite sequences of elements of the finite alphabet P,  with T the shift- 
map; the symbolic stochastic process (X, T, .A, #, P)  may thus be abbreviated 

P,#. 

A factor map ~ from the process P, m e  to the process Q, raQ is said to be 

unilateral if ~0-1(Q) is Vn°°__ 0 T-"P-measurable. Sinai showed in 1964 [15] that 
if the independent process Q, mQ has entropy less than or equal to that of the 

ergodic process P, rnp then Q, raQ is a unilateral factor of P, rap. In 1975, 

Ornstein and Weiss [9] gave a different demonstration of this result, and also 

claimed, with a brief indication of proof, that the hypothesis on Q, mQ could be 
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weakened to the assumption that Q, raQ is a Markov chain with all transition 

probabilities positive. Note that such a chain is mixing. 

Here we define a class of processes called "unilaterally finitely determined" or 

UFD processes, containing all mixing Markov chains with finitely many states 

(not just those with positive transition probabilities), and we show that every 

UFD process is a unilateral factor of every ergodic process of equal or greater 

entropy. The methods of proof also give an analogous result for non-mixing 

Markov chains. 

The main theorem of this article can alternatively be construed as a statement 

about non-invertible measure-preserving transformations; in this setting, it says 

that the one-sided mixing Markov processes are "universal factors" just as in the 

two-sided theory. 

Our style of proof is heavily influenced by the work of Arthur Rothstein and 
Robert Burton [13] on the "joinings" viewpoint in ergodic theory. Every factor 
map ¢p : X ~ Y from one system to another determines a joining of the two 

systems supported on the graph of the factor map; given such a "graph joining", 

it is easy to recover the map that gave rise to it. There is a canonical topology 

on the space of joinings, and the way Rothstein and Burton construct graph 

joinings is by taking limits of joinings that are not themselves graph joinings 

but become increasingly concentrated in the Y-direction. Imitating their style 

of proof, we will employ a Baire category argument to show that under suitable 
hypotheses, the set of joinings that correspond to unilateral factor maps is not 
only non-empty but actually dense in a certain natural subspace of the set of 

joinings (namely the space of "pre-unilateral" ergodic joinings). 

For a more discursive exposition of the methods used here, see this author's 
[11], an updated edition of which is now available. The major substantive dif- 

ference between the theorem proved there and the one proved here is that in the 

earlier work, the process P, mR was required to be an i.i.d, process. Here that 

restriction is removed, at the expense of introducing an extra level of complexity 

in the proof of the Copying Lemma (see section 3). 

The rest of the article is organized as follows. In the remainder of this section, 

we introduce terminology and notation. Section 2 sets up the framework in 

which the proof takes place. Sections 3, 4, and 5 are given to the proof of the 

theorem. Section 6 contains miscellaneous remarks on extensions of the theorem 

and related results. 
For the most part we adhere to the conventions of [1] (see chapters 1, 8, and 

10) and [6] (see chapters 1, 2, and 3). 

Let (X, T, ,4,/J) be a dynamical system. We may assume (X, .A,/z) is measure- 
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theoretically equivalent (modulo sets of measure O) to the interval [0, 1] with 

measure defined on all Borel sets. 

Suppose now that  P = {Pi : 1 <_ i <_ r} is a finite (labeled) part i t ion on 

(X, T, .A, #). P and # determine the distribution vector 

d i s t , (P )  -- (p(P1), p (P2) , . . . ,  #(Pr)) ; 

we put  the L 1-norm on the set of such vectors, so that  for example if P and Q 
are partitions of spaces (X, #) and (Y, v) with # ( P )  = # ( Q )  = r, 

r 

[dis t . (P)  - dist~(Q)l = y]~ Ip(P,) - u(Q~)I • 
i = l  

We will sometimes write P(i) instead of P/, to clearly distinguish the label i 

from the time-indices introduced below. If P and Q are partitions of a space X 

equipped with two measures # and u, and if P refines Q, then 

Idist~,(P) - dist~(P)[ > [dist.(Q) - dist.(Q)] . 

If P and Q are partitions of the same space satisfying # ( P )  = # ( Q )  = r, 

define their symmetric difference as the set 

r 

p zx Q = U pi zx Q i . 
i = 1  

If P and Q are partitions of different spaces (X, ..4, #) and (Y, B, u), let P = 

{-fii = Pi x Y} ,  -Q = {-Qi = x x Qi}; if # ( P )  = # ( Q )  (and #, u are non-atomic 

measures), then we have 

1 
inf lr ( P zx Q ) = ~ l dist ~, ( P ) - dist . ( Q ) l, 

where the infimum is taken over all measures rr on X × Y with zr(P~) = #(P~), 

= v(O ) for all i. 
If A is a measurable subset of X ,  we let P I A denote the restriction of the 

part i t ion P to the set A (namely {Pi f3 A}), and if p(A) > 0 we let # ] A or PA 

denote the conditioning of the measure # on the set A. More generally, given 

any measurable parti t ion of the space, we may disintegrate the measure # into 

measures Pa where a ranges over the atoms of the measurable partition. (Here, 

as hereafter, an "atom" of a measurable parti t ion or a-algebra is a measurable 

set none of whose non-empty proper subsets are measurable.) 
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For x ~ X, we let P(x) denote the component of P that contains x. We define 

P n  = T - r i P  = ( T - " P i }  

("the partition P shifted to time n"); it has the property that  P" (x )  = P(T"x) .  

We use the convenient abbreviation 

b 

P =V P". 
n Q 

It is convenient to shift back and forth between regarding P~(x) as an atom (i.e. 

component) of the partition P~ and as a string of b - a + 1 symbols in the P- 

alphabet; when we wish to take the latter view, we will call P~(x) a name instead 

of an atom. It is also sometimes useful to think of P~ as a finite ~r-algebra. 

When a is -oo or b is co, we use the same definition of P~ as above, only 

now it is to be understood that the right hand side denotes a ~r-algebra, not a 

partition. Two ~r-algebras of special importance are p o (the past  of P up to 

time 0) and P T  (the fu tu re  of P from time 1 onward). 

Let A be a measurable set, P, Q partitions of the space into measurable sets, 

and B,C sub-a-algebras of .4. We write: A E P if A is a component of P; 

A C P ("A is P-measurable") if A is a union of components of P; P C Q if 

every component of P is Q-measurable; P C B if every component of P is B- 
measurable; and B C C if every D-measurable set is C-measurable. As usual, all 

statements made about measurability of sets and functions are to be interpreted 

modulo sets of measure 0. 

If the set A is a subset of a single component of the partition P, we write 

P(A) to denote the component of P containing A. 

A joining of two systems (X, T, A, me),  (Y, S, B, mq) is a dynamical system 

(X × Y, T × S, .,4 × B, ~r) where the projection of ~r on ,4 (the "first marginal") is 

rap, the projection of ~" on B (the "second marginal") is mQ, and ~ is invariant 

under the product action T × S on X × Y. (If the last condition fails we call 

the system (X × Y, T × S, A × B, ~r) a n o n - s t a t i o n a r y  jo in ing;  if only the first 

marginal is what it is supposed to be, we call the system a half - jo ining.)  Let 

,4, B be the lifts of ,4, B to X × Y. 

Every factor map ~0 determines a joining ~r that is concentrated on the graph 

{(z, ~0(x)) : z E X}, for it suffices to define ~r on rectangles, and we can do 

this by putting u(A × B) = m p i x  E A : ~o(x) E B}. Such measures ~r are 

characterized by the property that  B C A modulo ~r; that  is, every D-measurable 
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m 

set differs from some .A-measurable set by a r-null set. We call such joinings 

g r a p h  jo in ings .  
One very important example of a joining is the independent (or direct product) 

joining (X x Y, T x S, .4 x B, p x v), which gives measure p(A)v(B) to each 

rectangle A x B. More generally, two systems with a common factor have a 

"conditionally independent joining" over that  factor (see [3], pages 110-115). If 

(Xi, Ti, .Ai, #i) (for i = 1, 2) are systems with a common factor (Y, S, B, v), the 

conditionally independent joining 7r = pl xv P2 has the property that .41 ± 

.4~ I ~ (modulo ~r). 
All the dynamical systems considered here are symbolic dynamical systems, 

for which it is clear what the transformation is (namely, the left-shift); we use 

the same symbol T to denote the left-shift in all cases. 

We will not restate the definition and basic properties of entropy, but we 

will remind the reader of the key fact that  if B1 C B2 C Us C . . .  are nested 

a-algebras with limit B, then 

H(P I Bn) x,~ H(P I B) . 

The c o n d i t i o n a l  m u t u a l  i n f o r m a t i o n  between a partition P and a a- 

algebra B relative to another a-algebra C is 

I(P;B I C) = H(P I C ) -  H(P I BV C) ; 

it vanishes if and only if P and B, when restricted to atoms of C, are independent 

for almost all atoms. Either B or C may be a partition rather than a a-algebra; if 

B is a partition Q, then we have the symmetry relation I(P; Q [ C) = I(Q; P I C). 
If C is trivial, we drop the word "conditional" and write I(P; B). 

All of these information-theoretic quantities implicitly depend on the proba- 

bility measure being used; when we wish to stress this, we will use notations 

such as HI,(P [B) or Iv(P; Q). In the case of conditioned measures PA, it is 

inconvenient to write H~a , so we will often write HA instead, to indicate that  

we are conditioning p on the set A. 

If •1, B2, and C are a-algebras on a space, we write B1 ± B2 [ C to signify 

that  on almost every atom of C, the a-algebras B1 and B2 are independent (with 

respect to the implicit measure). We assume that  the reader is comfortable with 

assertions like the following: for all a-algebras .4, B, C, and 9 ,  if A _l_ C I T~ and 

A _L B I C V D then A _L B V C I :D, and conversely. 
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2. Preliminaries 

Suppose P, mp and Q, met are symbolic processes on measure spaces X and Y. 

A uni la tera l  fac tor  map  from P, mp to Q, met is a measure-preserving map 

~0 : X --* Y that commutes with the shift and has the property that ~0-1(Q) 

is P_°co-measurable. A uni lateral  graph joining of P, mp and Q, mQ is an 

invariant measure on X × Y that projects to mp on X and mQ on Y, with the 
0 

property that Q is P_co-measurable. 

CLAIM 1: The following conditions on processes P, mp and Q, rnQ are equiva- 
lent: (a) there exists a unilateral factor map ~o from P, mp to Q, met; (b) there 
exists a unilateral graph joining p of P, rnp and Q, rnet; (c) there exists a pax- 
tit/on Q c p_oco in the past of the P-process such that the induced sub-process 
Q, rhet has the same law as Q, met. 

Proof." (a) =~ (b): Define p on X x Y by putting p(A x B) = mp(A  N ~- I (B) )  
for every measurable rectangle A x B and extending to the full a-algebra. 

(b) (c): For all 1 < < #(Q),  ¢(,) is P_co-measurable mod ao p, ,o there 

exists a set {~(i) in p_0co such that the corresponding set in ~_co0 differs from 

Q(i) by a set of p-measure 0. 
(c) =~ (a): There exists a / )_°-measurable  f u n c t i o n / :  X ~ { 1 , . . . , # ( Q ) }  

such that for almost all (x, y) in X x Y (modulo p), y 6 Q(/(z)). Let ~(x) denote 

the point ( . . . ,  f ( T - l x ) ,  f (x) ,  . f (Tz) , . . .  ) in the Q-process. v 

Note that the condition Q c P 0 is equivalent to the seemingly stronger - - 0 0  

- - 0  - - 0  
condition Q-co c P-co.  

Henceforth, we shall leave the over-bars in P,  Q, .A, B tacit. 

We call a joining p of P, mp and Q, met a pre-uni la te ra l  jo in ing  if 

P 7  ± Q._Oco [ p__Oco 

modulo p. Colloquially, this amounts to the assertion that the future of P 

contains no information about the past of Q that is not contained in the past of 

P,  and reciprocally, the past of Q contains no information about the future of P 

that is not contained in the past of P. If we wish to emphasize the asymmetric 

roles played by the two processes, we will say that p is "pre-unilateral from p__0co 

to Q_Oco.. 

CLAIM 2: A joining is a unilateral graph joining if and only if it is both a graph 
joining and a pre-unilateral joining. 

Proof." Suppose p is a joining of P, mp and Q, met. If p is a unilateral graph join- 

ing, then Q c poco, so that afortiori Q c P_~;  thus p is a graph joining. Also, 
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since Q c p _ o  we also have Q°oo c P°oo, which implies P•  ± Q_°oo [ p o = ;  
thus p is also a pre-unilateral joining. Conversely, suppose p is a graph joining 
that happens to be pre-unilateral. Since p is a graph-joining, 

O 0  - -  p O 0  • Q C P 1  V P ° = (  = -oo) 

Also, since p is pre-unilateral, Q°oo ± PT ] p o ,  so that 

Q ± P ° ~  l P °  = . 

These two conditions together imply 

Q c P  ° 

so that p is a unilateral graph joining. = 

CLAIM 3: A joining p is pre-unilateral if and only if it satisfies the seemingly 
weaker condition P ' ± Q °= I -P-L. 

Proof: One direction is trivial. To prove the other, assume that 

P '  X Q2= I P__°=; 

we will use induction to show that P~ i Q._°oo [ p o  for all n. Suppose that 

(1) p~ ± Q0= i pO=. 

Since p1 ± QOo~ [ p _ o ,  stationarity implies pk+l ± Qh_~ [ p_k=, i.e., 

p~+, ± Q o= V Q~ [ p__0= v P~. 

It follows a fort±or± that 

(2) pk+l ± Q_O¢¢ [ P°oo V P ~ .  

Combining (1) and (2), we get 

P ~ V p k + l  ± Q_0o~ I p o ,  

so that p~+l ± Q__0¢¢ I p__0=. Hence by induction P [  .L Q_0= i P_O for all n. 

Now send n ---* oo. [] 
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Remark: The condition P 1 .1. QOoo [ "e-°oo is equivalent to either of the condi- 

tions 

I(P';Q2oo I p_O) = 0 

and 

H( P1 I p_O V Q_°oo ) = H(P 1 I Pfloo) = h(P) . 

CLAIM 4: If  Q C P_~  (modulo p) and h(Q) = O, then Q c p o (modulo ~). 
Therefore every zero-entropy fac~or of a process is a unilateral factor. 

Proo£: Since Q is a zero-entropy process, H(Q 1 [ Q2oo ) = O, and Q1 c Q2oo 
modulo p. The chain of inequalities 

h(P V Q) = H((P V Q)' [ (P v Q)_°oo ) 

<_ H(P  ~ ] (P V Q)_°oo ) + H(Q ~ I (P V Q)°oo ) 

= H(P  1 ] (P V Q)°oo ) 

(since Q1 C Q°oo c (P v Q)°oo) 
<_ H ( P '  [p_O)  

= h(V) 

<_ h(P V Q) 

implies that  H(P 1 [ (PvO)°oo)  = H(P  ~ I P._°=), so that  p1  i Q2oo ] P-'oo,°. 

hence (by Claim 3) p is a pre-unilateral joining. Since/z is also a graph joining, 

Claim 2 implies that  /z is a unilateral graph joining. The second sentence of 

Claim 4 follows from the first, using the equivalence between joinings and factor 

maps set forth in Claim 1. v 

If p and v are probability measures on a a-algebra A with countable generating 

sub-algebra {A1,A2, . . . } ,  then p = v if and only if p(Ak) = v(Ak) for all 

k. Moreover, every countably-additive non-negative set-function on {Ak} that  

assigns the value 1 to the space as a whole extends to a probability measure on 

all of ,4 (see "The Extension Theorem," pages 219-225 in [14]). Define 

oo d(p,v) = ~ ]p(Ak)~ v(Ak)l 
k - - 1  

This gives a metric topology on the space of probability measures on ,4, with 

the property that  #n "-* v if and only if ~,(A~,) ~ v(Ak) for all k. For our 

purposes, the collection {A~} will be the algebra of cylinder sets in some process, 
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and we will call the topology determined by {A~,} (via the function d(-,-)) the 

d i s t r i b u t i o n  t o p o l o g y  on the set of measures. This topology is generated by 

balls of the form 

{# : Idist, R - dist,0 R I < e} 

where e > 0 and R is some partition into cylinder sets. 

When {Ak} is the cylinder algebra of a sequence space with finitely many 

symbols, the compactness of the sequence space under the usual product topol- 

ogy guarantees that  no infinite disjoint union of non-empty cylinder sets can be 

a cylinder set, so that every finitely additive set function on {Ak} is automati- 

cally countably additive. Hence we obtain a one-to-one correspondence between 

process-measures on the a-algebra generated by {Ak} and finitely additive set 

functions on {Ak} taking values in [0,1]. 

CLAIM 5: In the distribution topology, the set of invariant probability measures 

is a compact separable metric space. 

Proo£" Under the injective mapping # ~ (#(A1), #(A2) , . . .  ), we can realize the 

space as a subset of the compact separable space [0, 1] x [0,1] x . . . ,  determined 

by various constraints. One of these constraints is that the measure of the whole 

space must be 1. Another constraint is that  every set must get measure > 0. 

Still other constraints are consistency conditions that  a set-function must satisfy 

if it is to qualify as a measure; if we want ~ to be countably additive on A, it is 

necessary and sufficient that  its restriction to {Ak} be finitely additive. Lastly, 

there are the stationarity constraints I~(Ak) = I~(Ak,) (where Ak, = TA~). Since 

each of these constraints involves only a finite number of the coordinates/~(Ak), 

they jointly determine a closed subset of [0,1] x [0,1] x . . - .  [] 

A special case of the above arises from looking at the set of joinings of two 

dynamical systems P, m p  and Q, mQ. In this case, we assume that  the countable 

generating sub-algebra is the algebra of P V Q cylinder sets; a measure ~u on the 

product space X x Y will be a joining if (in addition to the constraints mentioned 

in the proof of Claim 5) it satisfies/~(A x Y) = mp(A)  and ~(X  × B)  = mQ(B) 

for all P-cylinders A and all Q-cylinders B. As in the proof of Claim 5, each 

such constraint involves only a finite number of cylinders (one, in fact). So, for 

the same reason as before, we have 

CLAIM 6: In the distribution topology, the set of joinings of two stochastic 

processes is a compact separable metric space, n 

Remark: It turns out that  this topology is actually independent of which gener- 

ators P,  Q one uses for the two processes; see [11] or [13]. 
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CLAIM 7: If R and R' are cylinder partitions, then H~(R [ R') is a continuous 
function of #. 

Proof: The quantity is a continuous function of the distribution vector dist~(RV 

R'),  which is itself a continuous function of p. D 

CLAIM 8: If R is a cylinder partition and B is an increasing ilmit of cylinder 
sub-algebras of A, then Hs,(R I B) is an upper semi-continuous function of ~. 

Proof." Fix # and fix e > 0. There exists a cylinder partition R ~ C B such that 

H~,(R [ R') < Ht,(R I B) + e/2. Hence (by Claim 7) for all v sufficiently close to 

# in distribution, H,(R I B) <_ H,(R I R') < H~(R I R') + e/2 < H~(R I B) + e. 
That is, H,( R [ B) < Ht,( R I B) +e for all v sufficiently near #. Hence H ( R [ B) 
varies upper semi-continuously with the measure. Putt ing it another way: for 

all a > 0, the set {p :  H,(R  I B) < a )  is open while the set {p :  H,(R  I B) > a} 
is closed, v 

CLAIM 9: The set of pre-unilateral joinings o£ two processes is a dosed subset 
of the space oa ejoinings. 

Proo~ Recall that pre-tmilaterality is equivalent to 

H( P1 I P-°oo V Q_°oo ) = H(P 1 I p_O) = h(P) 

(see the remark following the proof of Claim 3). Since H(P 1 [ p_0oo V Q._°oo ) is 
automatically less than or equal to H(P 1 [ p _ o ) ,  pre-unilaterality is equivalent 

to 

H(P 1 [ P_°oo V Q_°oo ) >_ h(P) . 

But H~(P  ~ ] P°oo v Q°o~) is an upper semi-continuous function of #, so the set 

of #'s for which the preceding inequality holds must be closed, v 

Heuristically, one may think of the set of pre-unilateral joinings as the distribu- 

tion-closure of the set of unilateral graph-joinings. More specifically, we will show 

that every ergodic pre-unilateral joining can be approximated arbitrarily well by 
unilateral graph-joinings. Anticipating our special interest in ergodic joinings, 

let us prove 
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CLAIM 10: A joining p is pre-unilateral if  and only if  almost all of its ergodic 
components are. 

Proof: Let Z denote the measure space p lives on. Without loss of generality, 

we may put Z = I.Ja Z~, and # = / A ~  da, where the A~,'s are ergodic measures 

supported on the respective Zo's (Aa(Za) = 1). Think of A as the measurable 
partition of Z into its ergodic components; since P, mp is ergodic, almost every 

Aa projects to mp on P_~00. The ergodic theorem implies that for almost all 

z E Z, the infinite name (P V Q)_°oo(z ) manifests (via frequency statistics) the 

distribution distx(z) (P V Q)~-I for all r, where A(z) is the A~ with z 6 Z,,. That 

is, (P  V Q)._°00(z) almost surely determines the statistics of ~(z) on cylinder sets. 

Also, no distinct )~'s can have the same statistics on all cylinder sets, since these 

statistics uniquely characterize each Aa (by the uniqueness part of the extension 

theorem). Hence (up to measure zero) , / is p _ o  V QO00-measurable. 

Now we may write 

H~,( P l  I p. O00 V 0200) = H~,(P 1 I p__O V O._°,, o v )t) 

/ Hx,(  P1 I P - ~  V 0°00) da 

I 

= [ h(P) da 
d 

= h ( P ) .  

Hence the equality H,,(P 1 I p_O00 V Q._O00) = h(P) holds if and only if 

Hx°(p1 ] p_000 V Q__°oo ) = h(P) 

for almost all a. ta 

If p is a joining of Q, mQ and ~), ~ 0  with # (Q)  = #((~) such that p(Qzx Q) < 
e, we say that the joining p is e-tight. We say that the ergodic process Q, m 0 

is uni la tera l ly  finitely d e t e r m i n e d  (or UFD) if for all e > 0 there exists a 

> 0 and a distribution neighborhood of Q, m 0 in the space of processes on 

# (Q)  symbols, such that for all processes (~, rh 0 in that neighborhood of Q, m 0 

that satisfy Ih((~) - h(Q)l < 8, there exists an e-tight pre-unilateral joining of 

Q, m 0 and (~, rh O. (Here pre-unilaterality means (~°_1-Q°_001(~°_00.) Note that 
if the pre-unilaterality requirement is dropped, we obtain the standard notion of 

a finitely determined process. 
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At a certain point in this article we shall also have to consider non-stationary 

joinings of two processes Q, mQ and Q, mQ. If p is such a non-stationary joining 

(that is, p projects to mQ and rhQ but is not necessarily invariant under the 

shift), we say that it is e-tight if and only if ~r(P n z~ Qn) _< e for all n. In the 

case that p is invariant, this coincides with the previous definition. 

We can now give an overview of the proof. Our aim is to show that a mixing 

Markov chain is a unilateral factor of every ergodic process of equal or greater 

entropy. Equivalently: 

THEOREM: If  P, m v  is an ergodic process and Q, mQ is a m/xing Markov pro- 

cess such that h( Q) <_ h( P), then there exists a unilateral graph jo/ning p of rap 

and mQ. 

To prove this, we first prove a Copying Lemma (section 3). The proof uses 

the traditional framework of Rokhlin towers and block codes, but in lieu of the 
customary marriage lemma it resorts to a random coding argument. Note that 

the pre-unilaterality constraint is indispensable in the hypothesis of the Copying 
Lemma; indeed, Claims 2 and 9 imply that if p is not pre-unilateral, then there 

exists a neighborhood of p containing n0 unilateral graph joinings. Section 4 

contains a proof of a Joining Lemma; it is an adaptation of Ornstein's proof [8] 

that independent processes are finitely determined. In Section 5, this result is 

combined with the Copying Lemma to yield an Improvement Lemma, which is 

shown to imply the Theorem. 

3. The  Copying  L e m m a  

Fix ergodic processes P, mp and Q, mQ with h(P) ~_ h(Q). Given an ergodic 

pre-unilateral joining p of P, rn/, and Q, mQ and a fidelity criterion, we wish to 

construct a P_°-measurable partition 0 such that the joint distribution of P 

and 0 approximates that of P and Q, and the Q-process has approximately the 

same entropy as the Q-process. More precisely, we require: 

1 [dist~((P V 0)~) - dist~((P V Q)~)[ < 6 and (a) 

(b) Ih(Q) - h(Q)l < 6. 

(We may suppose r > 1, < 1/10, < 1/ log # (P) . )  
Our construction, in outline, is as follows. We take a block-length n and a set 

E such that TE,  T2E, . . . ,  ThE  are disjoint and such that their union T*E has 
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measure nearly 1. (We do not insist that the level T " E  of the Rokhlin tower be 

disjoint from the "basement" E. )  We devise a measurable map f : p _ n  ~ Q~ 

taking semi-infinite P-names to finite Q-names and use it to give Q-names to all 

the points in the tower T*E.  Specifically, if a point x lies in the kth level of the 

tower (1 < k < n) and if its P_n~-name is A, then we assign x to the set Q(j), 

where j is the kth symbol of f ( A )  = f((P~-oo)(x)). (Points outside the tower 

may as well get assigned to Q(1).) 

To guarantee that  a Q constructed in this fashion is P__°oo-measurable , it suf- 

fices that  two conditions be satisfied: first, E is P__°oo-measurable , and second, 

f is "unilateral" in the sense that  if a ,  cr ~ are two semi-infinite P-names in p n  
- - O O  

that  agree up to time k > 1, then f(ct), f (eJ)  must also agree up to t ime k. The 

first condition allows us to determine, given (P_°oo)(z), whether or not z lies in 

T ' E ,  and if so, what level Tk(~)E it lies in; the second condition says that  for 

~ T k E  (say x = Tkx0), knowledge of P°oo(Z ) = p k (z0) gives knowledge of 

Qk(x0) = (~(z); so that ,  if both conditions hold, we see that  knowing ( P _ ° ) ( x )  

tells us Q(z).  

Most of this section is devoted to showing that a suitable f exists. Before 

doing this, let us first make sure that there is no difficulty in building Rokhlin 

towers whose bases are measurable with respect to the past. 

ONE-SIDED ROKHLIN LEMMA: Let ( X , T , . A , p )  be an ergodic process with 

generator P. Given any n > 1 and e > O, there exists a set E in P _ ~  such that 

the sets T E ,  T2E,  . . . ,  T h E  are disjoint with totad measure > 1 - e. Moreover, 

i f  G is some pre-speci~ed set of points with measure > 1 - g, we can choose E 

so as to satisfy p( G I E)  > 1 - e' as well. 

(We omit the proof.) 

Given e > 0 and n > 1, call an atom q of p _ o  e-good if for all but  e 4 in 

conditional measure of the points z E ~ one has 

v QT)(x) )  = 

and 
#~((P'~ V Q~)(z))  = e -(kh(pvQ)+(n-k)h(P) +n,) 

for all k < n, where p~ is p conditioned on the past-name ~. We wish to know 

that  most of the past-atoms a axe e-good. Theorem 3 in [12] says: 

EQUIDISTRIBUTION THEOREM: Let P, Q, and R be ~nite partitions of an 

ergodic dynamical system, with 0 < e < 1. Then for all n suf~ciently large, 



302 J . G .  PROPP Isr. J. Math. 

there exists a set oftibers a of  R_.°oo of  total measure > 1 - e, on each of  which 

it is the case that for all hut e in conditional measure of the points z q a, 

for all k < n, where 

#,~ ((P~ V Qk"+l)(z)) = e -'(eh-r`) 

Ok = l ( k h ( P )  + ( n -  k) h(Q)) . 
n 

(Note that  for P = Q, this is the Shannon-McMillan Theorem [7].) It follows 

from this theorem (by setting P , Q , R , e  equal to P V Q,Q,P,  e4/2 and then 

P V Q, P, P, e4/2) that  for all large n, the e-good atoms (~ have total measure 

> 1 - e a. Here e is some specific quantity whose dependence on r and ~ will be 

specified later; for now, we may stipulate that  e < ~5. Similarly, we will take a 

surrogate sub-block length s _> r, whose precise relationship to r and ~ will be 

discussed later (see the paragraph following the proof of Fact 2, below). 

Note that  if P, mR is an i.i.d, process, it is not necessary to condition on 

individual atoms a of p _ o ,  either here or in subsequent stages of the copying 

argument. 

Let G be the union of the e-good atoms of P_°oo. (Hereafter, we shall merely 

call them "good".) p(G) > 1 - e 4 > 1 - e, so by our One-Sided Rokhlin Lemma, 

we may suppose our base E has the property that G has conditional measure 

1 - e on E;  that  is, 

(3) pE(G) > 1 - e. 

We will also suppose that  our tower T*E satisfies 

# ( T ' E )  > 1 -  1 I n .  

Now we give a procedure for constructing the map f : P"_~ --+ Q[ .  We 

will do this by randomly selecting a map f,, : PI'  ~ QI' for each atom o~ of 

p _ o ,  and letting f ( a  N A) = f~(A)  for all A E PI'.  (Actually, only the o?s 

satisfying o~ C E are involved; the other a 's  are disjoint from E and play no part  

in the construction.) Since there are uncountably many a 's ,  we cannot choose 

all the maps f ,  independently of one another without sacrificing measurability 

of the unified map f ;  fortunately, we do not need to assume that  f ,  and f~,, 

are uncorrelated for o~ # a ' .  Indeed, here is a concrete way to imagine the 

simultaneous selection of all the f,, 's. Let 

N = (#(Q)'*)(#(P)") , 
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the number of possible block maps from P~' to Q~, and index these block maps 

as f (D,"" ,f(N). For each a,  the construction we are about to describe gives a 

probability distribution on the block-maps f(i); thus, for each past-name a in 

P°oo we can partition the interval [0, 1] into sub-intervals I,~,i so that  the length 

of I,,,i is equal to the probability associated with the block map f(i) for the past- 
n name a. To randomly select an f : P_noo ~ Q._°oo , it suffices to choose a single 

random number t • [0, 1], as we can then take f,~ = f(i) for the unique i such 

that  t • I,~,i, and then put f (a  n A) = fc,(A) as above. 

We will use F~ to denote the random variable taking its value in the set of 

maps fa  : P~' ~ Q~; similarly, we will use F to denote the random variable 

whose values are maps f : pn_oo -"* Q~. 
Fix a. fa  must have the property that the first k symbols of a P-name A • P~ 

determine the first k symbols of the Q-name fc,(A) • Q~; accordingly, we may 

think of f~ as a function that  takes P-names of length k to Q-names of length k, 

for all k between 1 and n. Our plan for constructing this extended version of the 

map f~ is to proceed iteratively, defining the behavior of the map on length-k 

names for k = 1, 2 , . . . ,  n in succession. 

First (k = 1), for each atom A of p1 we choose an atom Fc,(A) of Q1 at 

random, according to 

Prob [Fa(A) = B] - /~,~(A n B) /~,(A) -/*,~(B I A ) .  

For distinct atoms A E p1, we choose the F~(A)'s independently of one another. 

Now suppose we have defined Fa as a mapping from p ~ - i  to Q/-1.  We extend 

Fa to P t  as follows. Given an atom A of P1 k, let A be Pkl-'(A ) (the atom of 

pk-1 containing A), and let B = F ~ ( ] )  • Qk~-l. We choose Fa(A) from among 

the atoms B of Q~ contained in B,  according to the conditional probability 

Prob = B I = B--] = / a(A n B )  n - , o ( B  I A n B ) .  

For distinct atoms A E pk,  we choose the F,~(A)'s independently of one another. 

(More precisely, if A and A' are distinct atoms of P1 k, then F~,(A) and Fc,(A') 
are conditionally independent given Fa(A) and F~,(A---7), where A = Pp-I(A) and 
A-'--i= plk-,(A,).) 

If we iterate this construction n times, we get a random map F~ : P~ ~ Q[' 

with the property that  for all k < n, the first k symbols of A E P~ determine 

the first k symbols of F(A). 
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We now verify a crucial fact, namely, 

(4) Prob [F~(A) = B] = p~(B [ A) 

for a l l n a m e s A  6 P[', B 6 Q~. For a l l0  _< k < n, let A~, = Pkl(A ) and 
Bk = Q[(B). Thus in particular A0 and B0 are trivial names, while A,  = A 
and B ,  = B. Since p is a pre-unilateral joining, 

so that stationarity yields 

Afortiori we have 

which implies that 

(since Qk71 c Hence 

P7 z QO [ p o ,  

P k + l  .k Qk__= [ k oo p..~Eoo . 

P~+I i Q~ ] p_kc¢ , 

dist~,(Q~ I k = dist~(Q~ P-~oo v P-*oo V Qk11) [ Qk~-l) ; 

separating out the conditioning on p__0, we get 

dist , . (Q~ [ P~ V Qk~-l) = dist~o(Q~ [ P~ v Qk~-l). 

In particular, the nested atoms Ao,. . .  , A ,  and Bo, . . .  ,B,, satisfy 

(5) /~(Bk [ Ak N Bk-1) = #,~(Bk [ A.  N B~-I) 

f i P r o b  [Fa(Ak) = Bk I F,~(Ak-1) = Bk-x] 
k = l  

n 

---- H pa(Bk [ Ak N B~_,) (by construction) 
k----1 

N 

= H p,~(Bk I A .  [q Bk-1) (by (5)) 
k = l  

= p~(B.  [ A.)  (by successive conditioning) 

= p (B I A) 

for all 1 < k < n. Therefore 

Prob [F~(A) = B] = 

as claimed. 
With the aid of (4), we are nearly in a position to verify that with high 

probability our randomly selected map f : P_noo ~ Q~ will determine a {~ 
satisfying dist~,(P V ¢~)~ ~ dist~,(P V Q)~. Only one ingredient is missing, namely 
the following fact: 
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NORMALITY LEMMA: Let X be a bounded measurable function on an ergod/c 

dynamical system ( X,  T, p); put 

rt--1 

1 y ~  x(T~z) 
x * ( ~ )  = n 

k=0 

and 

= ] x(~) d p ( x ) .  

Carl the point x n,e-normal /f  [X~,(z) - ~[ < e. Then, given any e > O, it will 
hold that for all Rokhlin towers of su~ciently large height n and total mass > e 
(sic), all but e in conditional measure of the points in the base are n, e-normal. 

Proo~ Without  loss of generality, suppose the bounded function X satisfies 

sup X - inf X < 1. 

First note that  if a point z is n, e/2-normal, then Tkz is n, e-normal for ]k[ _< 

(e/Z)n. For, we have 

Ix , (T i+Iz )_  x.(T%)I = tin ( x (T i+"z ) -  x(Tix)) [ <In for all / ;  

adding together Ik[ < (e/2)n such terms, we find that 

l < e  
[x*(Tkx) -  X*(x)[ < [k[" n 2 

and 

Ix*(Tkz) - 21 -< lx*,,(T kx) - x:,(~)l + Ix;(~) - 21 < e 

as claimed. Now, the ergodic theorem guarantees that if n is large enough, the 

set of points x that  are not n, e/2-normal has measure < ca/2. Fix such an n. If 

T*E is a Rokhlin tower of height n and total mass exceeding e, the base E must 

have mass at least e/n. Suppose that  a proportion of more than e of the points in 

the base failed to be n, e-normal. Then the absolute measure of these abnormal 

points x E E would be at least e2/n. For all such x, Tkx is n,e/2-abnormal for 

all k with 0 < k < (e/2)n. The  set of such points Tkz has measure at least 

((e/2)n)(e2/n) = e3/2. This contradicts our assumption about  n, and proves 

that  in fact no more than an e fraction of the base can be n, e-abnormal. [] 
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Clearly the same result holds if we desire that  points in the base be n, e-normal 

not with respect to a single bounded function X but  simultaneously with respect 

to any finite set of bounded functions. In particular, we may take the indicator 

functions Xc(x),  where C varies over the components of (P  V Q)~. Then we see 

that  for nearly all points x in the base E of a Rokhlin tower of sultlciently large 

height n, the frequency statistics of length-s subnames in the length-n name 

( P  V Q)~ will be as close to dist~((P V Q)~) as we like. 

We now return to the context of our random selection o f f  : P2¢¢ -* Q~. Recall 

that  e and s are yet-to-be-specified functions of 6 and r. Put  d = e2 /# ( (PVQ)~) ,  

and call a ( P  V Q)~-name A x B (A e P~,  B • Q~) n o r m a l  if each length-s 

subname C • ( P  V Q)~ occurs in the name A x B with frequency p(C)  =t: e'. 

Define the a b n o r m a l i t y  se t  of a map F : P-~oo ~ Q~ and a Rokhlin base E as 

the union of the atoms a N A C E (a  in P__°o~, A in P~') for which A × Fa(A)  is 

abnormal. Lastly, say that  the map F itself is normal (with respect to the base 

E)  if the abnormality set has conditional measure < e 2 on E.  

FACT 1: I f  n is sut~ciently large, the likelihood that the random map F is 

normal is at least 1 - e. 

Proof: By the Normality Lemma and the remark that  follows its proof, if n is 

large enough all but  an e s fraction of the points in E will have normal ( P  V Q)~- 

names. This implies that  off of a set of P_°oo V Pie-names aN A of total conditional 

measure < e 4 on E,  the a f3 A-conditional measure of the normal ( P  V Q)~-names 

exceeds 1 - e 4. Focus on a non-exceptional a f3 A; the set of names B 6 Q~ for 

which A x B is normal has conditional measure > 1 - e 4, so if one chooses such 

a name Fa(A)  at random with Prob [F~(A) = B] = p ( B  I a N A)  (which is 

precisely what our construction of F has us do), the probability that  A × F,~(A) 

will be normal is at least 1 - e  4. If we now let a N A  vary, we see that  the expected 

conditional measure (relative to E)  of the abnormality set is < e 4 + e 4 = 2e 4, so 

that  with likelihood > 1 - 2e 2 > 1 - e, the abnormality set has measure < e 2 on 

E,  in which case F is normal, v 

FACT 2: / f F  is normal, the resu/t/ng Q has the proper ty  that  

[dist ((V V O)t) - distt,((V V o) )l < 

Proof: Let E '  be the complement of the abnormality set in E ,  and let X '  = 
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{T k : z • E ' ,  0 < k < n - s}. Then the normality of the points in E '  implies 

v Q h l X  ) - d i s h , ( ( P v Q ) [ ) [  = ~ [dish,(( P " , , 
ce(PvQ)t 

< #((P v 

(where C denotes the atom of (P  V Q)[ corresponding to C • (P  V Q)[). On 

the other hand, the points Tkz with z • E \ E '  and 0 _< k < n - s have 

total mass < ez, the points Tkx with z • E and n - s < k < n have total 

mass < s/n < e z (for large n), and the points z that  belong to none of the 

TkE (0 < k < n) have total mass < 1In < e 2 (for large n), so p(X \ X ' )  < 

3e 2 and Idistt,((P V Q)[) - dish,((P V (~)[ I X')I < 2#(X \ X ' )  < 6e ~. Hence 

[dist .((P V Q)~) - dist~,((P V Q)~)[ < 6e 2 + e 2 < e. v 

We now complete the specification of the quantities s and e in terms of r and 

6. We have already stipulated that  s > r and e < 6 5 < 6, so the inequality in 

Fact 2 implies 

1 [dist .((P V Q)~) - d i s t . ( (P  V Q)~)[ < 6 
2 

which is condition (a) from the beginning of this section• However, by requiring 

s to be even larger and e to be even smaller, we can go part of the way toward 

ensuring that  (b) is satisfied as well. For, suppose s is so large that  (1/s)H(Q[) = 
h(Q) -4- 6/2. Then by requiring e to be suitably small, we can ensure that  the 

condition 

(6) 
• ~$ • $ 

[dish,(Q1) - d,st~,(Q1) [ < e 

implies (1/s)H((~) < (1/s)H(Q~) + 6/2• It follows that  if the partition 

satisfies tdistt,((P V Q)~) - dist~,((P V Q)~ )I < e (so that  afortiori (6) is satisfied), 
l - $  then h({~) < ;H(Q1)  < h(Q) + 6. This gives us half of condition (b); to prove 

the other, we need to show that  h(Q) > h(Q) - 6. 

Recall (see (3)) that  the union G of the good atoms of P..°oo has conditional 

measure > 1 - e on E.  Suppose a is a good atom of p _ o ,  and let G,, be the 

union of the (P  V Q)~'-names C with the property that  

v Q D ( c ) )  = 
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and 
~a( ( P~ V Q, kl )( C) ) = e -(kh(PvQ)'l'(n-k)h( P)-l'n') 

for all k < n; since a is good, p~(Ga) > 1 - e' > 1 - (el2) s. 

Let Aa be the collection of atoms of P[~ I a on which G~, has measure > 

1 - (e/2) 2, so that  #(U,4)  > 1 - e/2, and let B~ be the collection of atoms 

of Oi' I on which G ,  has measure > 1 - (,/2) 2, so tha t /~(U B) > 1 - el2. 

Given A E .Aa and B E Ba, call A and B compa t ib l e  if A N B C Ga; we write 

B e Compa(A), A e Comp,,(B). Note that for each A • Aa, the probability of 

choosing F~ such that  F~(A) • Comps(A) is at least 1 - (e/2) 2. Hence, off of 

a set of exceptional fa ' s  of total probability e/2, the atoms A • .Ao, satisfying 

F~(A) • Comp,~(A) occupy all but e/2 of U Aa, and thus all but e of X. For 

each fa ,  let 

.4"~ = {A • ~4~ : f~(A) e Compa(A)} 

(this depends not only on a but on f~ as well) and let f* be the restriction of f~, 

to .Am. In this way each map fa  determines a restricted map f*,  and the map- 

valued random variable Fa determines another map-valued random variable F*. 

With probability > 1 - e/2 > 1 - e , / ~ ( U  A*) > 1 - e. Call the map f,~ g o o d  

i f / ~ ( U  A~,) > 1 - e. Then we have shown: 

FACT 3: / f a  iS good, then the likelihood that F~ is good exceeds 1 - e. 

(Here, as in Facts 4 through 8, the words "For all sufficiently large n..." 

implicit.) 

a r e  

o 

Say that  the P~-name A is ba l anced  with respect to a particular map fa  
if #(f~,-~(f~,(A))) < e n(h(P)-h(Q)+o'), where we adopt the convention that  

f * - l ( f * (A) )  is empty when A ¢ ,4* = dom f*. Say that  the map f a :  P~ ~ Q{' 

is balanced if the set of balanced names A E P~ has #a-measure > 1 - e. Lastly, 

say that  the map f : P-~oo ~ Q~ is excel lent  if the set of a 's  for which a is good 

and fa  is good and balanced has pE-measure > 1 -- 6 s. We will show that  (for 

large n) the likelihood that  the random map F is excellent exceeds 1 - ~, and 

that  if f is excellent, the corresponding partition Q satisfies h(Q) > h(Q) - 6. 

FACT 4: For alIA E A~,, the expected cardhaality of  F~-I(F*~(A)) is less than 
en(h(P)-h(Q)+5~). 

Proof." Fix B, and condition our random selection of F~ on the event {f~ : 

fa(A) = B}. If B • Compa(A), we get F~,-I(F~(A)) = ¢. On the other hand, 
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suppose B E Comps(A),  so that  A E ,4*; if we can show that  in this case the 

conditional expectation of #(F*-I(F*(A)))  must be less than e =(h(p)-h(Q)+5¢), 
then we will have proved Fact 4. 

We have A E P~,  B E Q~* with B E Compa(A); the conditional expectation 

of #(F~,-I(F~(A))) is equal to 

(7) E Prob [F~(A') = B I F,~(A) = B] .  
A'ECompa(B) 

Fix A' E Compa(B);  suppose the length-n name A' agrees with the length-n 

name A up to time k but  no further, with 0 _< k < n. If we let A = P~(A) = 
P~( A') and -B = Q~( B), then the conditional independence of Fc,( A ) and F,~( A') 
given Fa(A) implies 

Prob [F~(A') = B I F,~(A) = B] = , ~ ( A '  n B)  - -  , 

~,~(A' n B) 

Since A' E Comps(B) ,  we have A' 13 B C Ga, so that the contribution of A' to 

(7) is 

, .(A' n B) 
~,~,( A' n -~) 

e-( n h( PvO) 4- no) 
e-(k h(PvQ) + ( . -k)  h(P) 4- .c) 

< e--("--k)(h(PvQ)--h(P))+ 2"~ . 

Now hold k < n fixed and let A' vary over all B-compatible names that  match 

A for k steps but  no further. Each such A' must satisfy 

/~,~(A n B) e-(~ h(PvQ) + (.-k) h(q) ± .,) 
p~(A' N B) e-(" h(~'vQ) ± .~) 

< e(n-k)(h(VvQ)-h(Q)) +2"~ , 

so the number of such atoms A' is at most e("-k)(h(vvQ)-h(Q))+2"~; and since 

each contributes at most e -(n-k)(h(vvQ)-h(P))+2n~ to (7), their joint contribution 

is at most e (n-k)(h(P)-h(Q))+4n¢ < e n(h(p)-h(Q)+4e). Hence, summing over all 

0 _< k < n, we can bound (7) by (n + 1)e n(h(P)-h(Q)+4~), which is less than 
e " ( h ( P ) - h ( Q ) + 5 ¢ )  for large n. a 

FACT 5: Ira is good, then the likelihood that F~ is balanced exceeds 1 - e. 

Proof." Suppose not. Tha t  is, suppose that  the likelihood is e or greater of 

choosing Fa such that  #(F*-I  (F~(A))) exceeds e "(h(v)-h(Q)+e~) for a set of A's 
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of total measure _~ e. Then the expected value (as F~ : PF -* QF and A E .4~ 

vary) of #(F*- '(F~(A)))  must be at least e .e .  e n(h(P)-h(Q)+eO. But for large n 

this exceeds e n(h(F)-h(Q)+$O, whereas the estimate from Fact 4, averaged over 

all A, implies that  this expected value must be less than e n(h(P)-h(Q)+50. This 

contradiction establishes Fact 5. v 

FACT 6: The likelihood that F is exce//ent exceeds 1 - 6. 

Proof: We already know (see (3)) that  all but  e of the atoms of P_  ° [ E are good. 

Fact 3 tells us that  i f a  is good, the likelihood that  F~ is good is > l - e ,  while Fact 

5 tells us that  if a is good, the likelihood that  F~ is balanced is > 1 - e. Hence if 

we let a vary over all the atoms of p _ o  ] E,  the expected pc-mass  of the atoms 

(~ for which a is good and Fa is good and balanced is > (1 - e)(1 - 2e) > 1 - 3e. 

Since e was chosen < 65 < 64/3, we have 1 - 3e > 1 - 64, so that  with likelihood 

> 1 - 6, the good atoms a for which Fc, is good and balanced have total PE- 

measure > 1 - 6 3, in which case F is excellent, o 

FACT 7: //" ot Js good and f~ Js good and balanced, then Ht,°(P F I OF) < 
n(h(P) - h(Q) + 62). 

(Hereafter, we will write Ha instead of H~o .) 

Proof: Fix a good and f~ good and balanced. Since fa  is good, ft~(U .4*) > l - e ;  

and since fa  is balanced, the names A that are balanced with respect to f~ have 

p~-measure > 1 - e. Therefore, for a set of names A E .A, of total p~,-measure 

> 1 - 2e, the cardinality of f~- l( f~(A))  is less than M = e "(h(P)-h(q)+eO. 

Put  lexicographie ordering on the collection .A~,, and for each balanced name 

A in .A~,, let r(A) be the rank of the P -name  A in the ordered sub-collection 

f~- i ( f~(A))  of P-names,  so that  1 < r(A) < M. Then there is a function from 

0F x { 1 , . . . ,  M} to PF which takes (f~,(A), r ( a ) )  to A, for all balanced names 

A e A * .  
For 1 < i < M, let R(i) = I,.J{A E .4* : A is balanced and r ( A ) =  i}, with 

R(0) consisting of everything else. On each component R(i) with 1 < i < M,  

fc,(A) and i jointly determine A. Recall that QF(x) = f,~(P'~(x)) for all x E a.  

Thus 

nc,(P~ [ 0'~ V R) = p~(R(o))HR¢o)(P~ I 0'~) 
< (2,)(log #(P?)) 

= (20( .  log #(P))  
< 

< . ( 2 # ) .  
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On the other hand, 

H,~(R) < log(1 + M) 
< n(h(P) - h(Q) + 7e) 

< n(h(P) - h(Q) + 7~5). 

Therefore 

<_ n~(P7 I 07 v R) + H~(R) 

< n(h(P) - h(O) + 765 + 26') 

< n(h(P) - h(Q) + 62). 

FAc~ S: ~ F  is exc~lent, h ( ~ )  > h(Q) - 6. 

Proof." By Fact 7, the excellence of F implies that 

H~(P'~ ] Q'~) < n(h(P) - h(Q) + df 2) 

for all but a 63-fraction of the a 's  in E. On the remaining a's, we have 

H~(P'~ ] Q'~) <_ l og# (P )  n = n l o g # ( p )  < n / 6 ,  

so the average , ~ u e  of H~(P[ I ~)~') is at most 

(1 - ,53)n(h(P) - h(Q) + 62) + (63)n/6 

= n [ ( 1 - 6 3  ) ( h ( P ) -  h(O) +62 ) +62 ] 

< n[h(P) - h(Q) + 262]. 

So, using the fact that the partition of E into past-atoms ot is p _ o  V Q~'- 

measurable, we get 

HE(P~ I p O v ( ~ )  < n(h(P) - h(Q) + 262) 

and afortiori 

HE(P~ I p O v ( ~ ¢ )  < n(h(P) - h(Q) + 262). 
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Now, since the partition of X into TE,  T2E, . . . ,  T"E,  X \ T*E is P--oo--1 
measurable, we have 

7g 

H~,(P [ P - L  V Q_~)  = E # ( T i E ) H T ,  E(P [ P - L  V Q-~oo) 
i = l  

+ #(X \ T*E)Hx\T .E(P I P - £  V 0,_~oo) 

= #(E) HT, E(P[ t'-oo -I  V 
L i= l  

+ # ( X  D 

But the first bracketed expression is equ~ to HE(P~ I p_o V ~Y~),  whi~ is 
less than or equ~ to n(h(P) -h(Q)+  26 ~), while the second bracketed expression 
is at most log #(P). Also, ~,(E), ~(X \ T 'E)  < Vn. Hence 

H~(P I p-1 V (~Yoo) < 1 [n(h(P) - h(Q) -t- 252)] + 1 [log #(P)] 
- - o o  - -  n n 

= h(P) - h(Q) + 252 + log # (P )  , 
n 

which is less than h(P)  - h(Q) + 362 < h(P)  - h(Q) + 5 for large n. 
On the other hand, H(P I -1 P-:oo V Q_°°oo ) = h(P V Q) - h(Q) (see [10], p. 66, 

Theorem 8). Note h(PVQ) = h(P) since Q_°°.o c P-¢~o- Hence h(PV(~)-h((~) = 
h(P) - h(Q). Thus 

h(P) - h((~) = H(P  [ -1 ~ =  v 0y=) 
< h(P) - h(Q) + 5, 

which implies h(Q) > h( Q ) - & [] 

Combining all of the above ingredients, we get the 

COPYING LEMMA: We are given an ergodic pre-uniIateral joining of two dy- 
narnical systems with respective finite generators P and Q, such that h(Q) <_ 
h(P). For all 5 > 0 and all r > 1, there exists a partition 0 C 19_ '0 such that 

1 Idist ( P - r  [ 
- V Q ) l - d i s t ( P V Q )  ~ <5 and Ih(O)-h(Q)l<*. 
2 

Proof: Choose a map F at random, with n sufficiently large; this determines a 
partition Q. By Facts 1 and 2 (together with the remarks following the proof of 
Fact 2), the probability is close to 1 that the conditions 

1 i d J s t ( P V ~ ) ~ _ d i s t ( P V Q ) ~  [ < 6 and h(Q) < h (Q)+6  
2 
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are satisfied. On the other hand, by Facts 6 and 8 above, the probability is close 

to 1 that the condition 

h(0)  > h(Q) - 6 

is satisfied. 

Therefore, there exists a (~ satisfying all three conditions simultaneously, v 

4. The Joining Lemma 

In this chapter we will establish the fundamental property of mixing Markov 

processes ("special finite determinedness") that enables us to prove a unilateral 

factor-map result. We will first show that under suitable hypotheses, two pro- 

cesses Q,, thQ and Q, mQ have a "non-stationary one-sided joining" that is tight 

and satisfies an analogue of pre-unilaterality. We then stationarify the joining 

and make it two-sided without affecting the pre-unilaterality or the degree of 

tightness. Finally, we show that the stationary tight pre-unilateral joining may 

be assumed ergodic without loss of generality. 

Outside of this chapter, the approximate copy of Q, mQ is called (~, rhQ; here, 

however, to avoid a plague of tildes, we will use the name P, mp instead. This 
will cause no confusion, since the P, mid of the main theorem is nowhere in sight 

throughout the proof of the Joining Lemma. 

A (stationary) one-sided joining of two processes P, mp and Q, rnQ is a mea- 

sure r defined on p~o V Q~O that projects to mp on p~o, projects to rnQ on Q~O, 

and is invariant under the product action. If the last condition is not satisfied, 

we call p a non-stationary one-sided joining. In both cases, we say Ir is e-tight if 

# ( P )  = # (Q)  and r ( P "  ~ Qn) _< e for all n. 

A one-sided joining (stationary or not) will be called pre-unilateral if 

pn+,  i Q~ ] Po n 

for all n _> 0. 

We begin with two information-theoretic lemmas. 

INFORMATION LEMMA: IfI(P;Q I R) < e 4, then a/l but e of the atomsQjNR k 
satisfy 

1 d i s t ( P l Q j n R k ) _  dist ( p  [Rk) ] < e .  

Proof." In 1967, Csisz~, Kemperman, and Kullback proved (independently of 

one another; see Theorem 4.1 in [2], Theorem 6.11 in [4], and [5]) that for all 
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probability vectors x = ( x l , . . . ,  x , )  and y = ( Y l , . . . ,  yn), 

k = l  Y k  - -  2 [Xk - -  ~]k[ ; 
k = l  

we will use a weaker version of this estimate, with the constant 1/2 replaced by 

1/4. Combining the weakened estimate with Jensen's inequality (and the fact 

that  ( t /2) 2 is convex in t), we have 

e 4 > I(P; Q ]R)  

,, ,, m(PilQj n Rk) = ~ m(QjnRk)~'~ m(P, IQjn~tk),og 
 (al 5 j,k i 

>_ ~ m(Q~ n Rk) Im(Pi [ Q iNRk) -m(P i  [ Rt)l ) 2 

m(Pi l O j n R k ) - m ( P i  l Rk) )2 

NRk)-dis t (P ] Rk)l ) 2 • 

CONCAVITY LEMMA: H~(P [ Q) is a concave function of#.  That is, i f  pl and 

p2 axe measures on P V Q and u = tpl + (1 - t)p2 with 0 < t < 1, then 

H.(P I Q) >- tHm(P [ Q ) + ( 1 - t ) H g , ( P  I Q) . 

Proof: Without loss of generality, we may assume pl and p2 are disjointly sup- 

ported. Let R be a partition of X into two sets that  support the respective 

measures pl,/~2- Then 

H~(P I Q) > H~(P I Q v R) 
= tHm(P I Q) + ( 1 -  t)H~,(P I Q). 

ca 

We now proceed to prove the Joining Lemma. Suppose Q, m 0 is a mixing 

Markov chain and e > O; we wish to find 5 > 0 such that  for any process P, mp  

satisfying 

(a)~ I d i s tP  1 - distQ~ 1 < 5  and 

(b)lh(P) - h(Q)[ < 5, 
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there exists an e-tight pre-unilateral ergodic joining of the two processes. We 

will construct such joinings in three stages: first, as one-sided, not necessarily 

stationary joinings; then, as two-sided and stationary but not necessarily ergodic 

joinings; and lastly, as two-sided, stationary, and ergodic joinings. The properties 

of e-tightness and pre-unilaterality will hold at all three stages. 

For the first stage, our strategy will be to successively construct joining- 

measures on P V Q, P01 v Q~, P0 2 y Q20, etc., such that  each measure extends 

the previous one. An atom of P[* V Q~* will be called m a t c h e d  if the last P- 

symbol and the last Q-symbol match, and m l s - m a t c h e d  if not; we must make 

sure that  for each n, the mis-matched atoms of P~* V Q~* have total measure _< e. 

Our extension procedure will be a modified greedy algorithm; under most cir- 

cumstances, we will simply join dist(P '*+1 I P0 n) and dist(Q '*+1 I Q~*) in as tight 

a way as possible. This ensures that  mis-matches will seldom arise spontaneously. 

The danger is that  when a mis-match does occur, it will force a mis-match at the 

next stage, and the stage after, and so on - -  so that,  even though spontaneous 

mis-matches hardly ever happen, they might tend to last a long time. Indeed, 

this is what happens if you try to join a non-mixing Markov chain with a mixing 

Markov chain whose distribution and entropy axe close; once the two processes 

"get out of sync", it may take an extremely long time before they match again, 

no matter  how you devise the joining. Fortunately, this cannot happen in the 

mixing Markov case. When the two processes get out of sync, we let them run 

independently of one another for a while. The expected time it takes for the 

two processes to randomly come into matching is finite, and indeed does not 

depend in any significant way on 6, but only on the statistics of the original 

process Q, mQ. Once the two processes match, we continue as before, matching 
the conditional distributions of P "  and Q" in as tight a way as possible. 

To force our joining P ~  V Q~O to satisfy the pre-unilaterality condition 

p . + l  ± I P0" 

for every n, we must make sure that  

dist( P " + '  I P0" V Q~*) = dist(P "+1 I P0'*) • 

In fact, our constructed joining will also satisfy 

dist(Q "+1 I P0" y Q~') = dist(Q '*+1 I Q~*), 

so tha t  when we pass to the limit, we get a non-stationary one-sided joining in 

which pre-unilaterality holds "in both directions". 
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We now begin the proof proper. Let M denote the transition matrix of Q, mQ. 

Since the Q-process is mixing, there exists a positive integer r and a real number 
,7 > 0 such that all entries of M r exceed y}. 

Let 
T} e 1 4 

E1 ----- - -  --  ~2 
r 3 ' ~ 1  • 

There exists 0 < 6 _< e2 such that every process P, m p  (with # ( P )  = # ( Q ) )  

that satisfies (a) also satisfies 

1 [dist(P, lp(i))_~st(O, lQ(i))[ < e, (8) 

(for all 1 < i < # ( Q ) )  and 

(9) {H(P 1 { P ) -  H(Q 1 {Q){ < e2 • 

(For, H(P 1 I P )  varies continuously with dist P01, and so does dis t (P 1 I P(i)) 

provided we stay away from distributions that give P(i) measure 0; since 

mo(Q(o) > 0 

for all i, we are safe if we take $ sufficiently small.) H(Q' I Q) = h(Q) since 

Q, mQ is a Markov process. 
Now suppose P, mp  satisfies both (a) and (b) with $ as defined above. Then 

(9) implies that  for all n 

i(pn+i; p : - i  IP" )=  H(P n+' I P " ) -  H(P "+' l P0 ~) 
= H( p l  { P ° ) -  H(P1 i To ) 

<_ H(P '  I pO) _ h(P) 

_< {H(P 1 I P ° ) - H ( Q  1 I Q°)I 

+ IH(O' I 0 °) - h(O)l 
+ lh(O) - h(P){ 
< e 2 + 0 + 6  

2e2 

This implies, by the Information Lemma, that 

l l dist(P"+' l AnB)-dist(P"+~ l A) l < ea (10) 
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with the exception of a set of atoms A n B of P"  V p : - I  whose union - -  call it 
E( n ) - -  satisfies 

(11) F(E(n)) < ~1 • 

If A n B lies outside the exceptional set E(n) ,  and C is the atom of Qr, corre- 
sponding to A, then (by (8) and stationarity) 

(12) 21 ] d i s t ( P n + l l A ) _ d i s t ( Q . + l l c ) l <  ~1 

and (10) and (12) together imply that 

(13) 21 I d i s t ( P n + l l A n B ) _ d i s t ( Q , + l l C ) l < 2 q  

Now we create a one-sided joining p by iteratively constructing joinings of P~ 

and Q~. Informally, we describe the inductive step as follows: If the P-name 
and Q-name seen so far agree at the most recent symbol, then the distributions 

at the next step are to be joined in as tight a way as possible. If however they 

disagree, then the two distributions are to be joined independently at the next 

step. 
More precisely: We first determine p on P 0 V Q0 by joining the two time-0 

distributions as tightly as possible; i.e., 

1 1 
/z(P ° A Q0) = 2 I d is t (P°)  - dist(Q °) I -< ~ I dist(P01) - dist(Q~) I </~ < el . 

Now suppose/~ has been defined on P~VQ'~, and we wish to extend the definition 
p,,-1 r3- r~n-1 respectively. t ° P 0 " + l v Q ' 0  +1- Let A, B,C,  D be atoms °f P ' , . o  ,.¢ ,w o 

Whether or not A and C match (i.e., whether or not A = P~.) and C = Q(~/) for 
some i), we will put 

dist ,(  P ' + I  I A N B N C N D) = dist(P "+1 I A N B ) ,  

dis t , (Q "+1 [ A n B n C N D) = dist(Q "+1 [ C n D) 

= dist(Q "+1 [ C ) .  

This guarantees that p will be a (one-sided) joining, yet still leaves us much 
freedom in determining the joint distribution 

distj,(P "+1 V Q,+I  ] A n B n C N D). 
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If A and C match, then we join p , + l  and Q,'`+I as tightly as possible on A O 

B O  C A D ,  i.e., 

1 [dist(P.+,[AnB)_dist(Q,'̀ +,[C)[; i~(P "`+1 z~Q, "̀ +1 [ A A B A C A D )  -- 

if moreover A n B lies outside of E(n), this equality implies 

(14) p(pn+l A Q,n+I [ A n B N C n D) < 2el , 

by (13). If A and C don't match, then we make p'`+l and Q,n+l conditionally 

independent on A N B n C o D. 

Iterating this construction, we get a non-stationary one-sided joining # on 

P ~  V Q,~o. For all n it satisfies pn+l j_ Q,,~ [ p~, so it is a non-stationary 

one-sided pre-unilateral joining. 

For future convenience, we re-index (14) and write it as 

(15) ,', Q,'` I B n D )  < 2,, ; 

the inequality is achieved whenever the names B E p~ - I  and D E Q,~-I match 

and B lies outside of E(n - 1). 
It now remains to show that p(P'` z~Q'`) < e for all n. To prove this, let Fk(n) 

(1 < k < n + 1) be the union of the atoms of (P V Q)g such that the P-name 
and Q-name disagree in the last k positions but agree in the position preceding 

that; thus pn z~ Q,n is the union of F,(n),F2(n), . . .  ,r'`+~(n). 
First we will show that F~(n) (the set of mis-matches arising spontaneously at 

stage n) is small. (Note that with n = 0, p(Fl(0)) --- Iz(P ° z~Q, °) < el.) Suppose 

A A B A C A D  (an atom o f F "  VP~ -1 VQ, n VQ,"0 -1) is in Fl(n), so that B and D 

match. Then either B is in E(n - 1) or else p(P'` z~ Q,n[B n D) < 2e, (by (15)). 

The atoms A N B n C n D c F1 (n) of the former sort have total measure at most 

#(E(n - 1)) < el (by (11)), while those of the latter sort have total measure at 

most 2el. Thus p(Fl(n)) < 3e, for all n. Since F2(n) C Fl(n - 1), we also get 

t~(F2(n)) < 3el for all n, and similarly #(F~,(n)) < 3el for all k,n. 
We win now show that Fk+r(n "t- r) is uniformly strictly smaller than F~,(n) 

("raiN-matches decay with uniformly positive probability in r steps"). Fix AN B A 

C A D  in F~(n). Then/~(Fk+r(n-t- r) [ A A B A C A D )  is equal to the probability 

that if one starts the P-process with past A n B and the Q,-process with past 

C n D and continues them in an independent way for r steps, they will disagree 

for all r steps. Thus/~(Fj,+r(n q- r) ] A n B n C n D) is bounded above by the 

probability that if one runs the independent continuation of the two processes 
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starting from respective histories A f3 B and C f3 D, they will disagree at the r th 

step (that is, at time n + r). But  we chose r so that dist(Q "+r ] C f3 D) has 
all its entries > T/, so regardless of what dis t (P n+r ] A f3 B)  is, the probability 

exceeds y/ that  the two processes in the independent continuation will agree at 

time n + r. Hence 

/~ (Fk+r (n+r )  [ A n B n C n D )  < 1 - o  

for all A t3 B f3 C f3 D in F;,(n), and it follows that p(F~+r(n + r)lF;,(n)) < 1 - tl 
for all k,n. 

Applying the inequalities 

p(Fk(n)) < 3el 

we get 

etc. Therefore 

and p(Fk+r(n + r)) < (1 - tl)l.t(Fk(n)), 

p(Fk(n)) < 3e, for k > 0, 
, ( f k ( n ) )  < 3e,(1 - 7) for k > r, 
#(Fk(n)) < 3ex(1--77) 2 for k > 2r, 

n + l  

p(p'~ h Q.)  = Z p(Fk(n)) 
k----1 

< 3e , .  ( r .  1 - t - r .  ( 1 -  7/) + r .  (1 - I/) 2 + . . . )  
r 

---- 3 e l  • - 
T/ 

as claimed. 

Now, for the second stage, we will see how to turn the not necessarily stationary 

one-sided e-tight pre-unilateral joining # into a staiionary two-sided e-tight pre- 

unilateral joining/~. Because of pre-unilaterality, p satisfies 

H~(pb+] ] pb V Qb) >_ H~,(pb+l [ pb ° V Qbo) 

= Hi*( Pb+l I Pbo) 
= Hmp (pb+l [p0 b) 

> H,.,.(P b+l I P2~) 

= h(P) 

for all 0 < a < b. Let p ,  be the n-step translate of p; i.e., 

dlst,,. (P v Q)~ = dlst,, (P v Q) . :k  . 
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The p , ' s  will be e-tight joinings that satisfy 

H~,,,(pb+l ] pb V Qb) >_ h(P) (16) 

for all 0 < a < b. Let 
1 n--1 

vn = -- Z pk ; 
n 

k--O 

v. is an e-tight joining, and by (16) and the Concavity Lemma, 

(17) H .(P I v Qb >- h(P) 

for all 0 < a < b. By the compactness of the space of non-stationary joinings (an 
easy generalization of Claim 6), the sequence of v,,'s has an accumulation point 
v; v is an e-tight joining, and by (17) and the continuity of dist(P b+! ] P~ V Q~), 

(is) H (P b+' I v Qb >- h(P) 

for all 0 < a < b. What is more, v, being an accumulation point of measures v, 

that approximate stationarity arbitrarily closely for large n, is stationary. Let 

/% be the natural extension of the stationary one-sided process v;/% is an e-tight 

two-sided joining, and by (28) and stationarity, 

(19) H~(pb+, [ pb V Qb) >_ h(P) 

for all a < b (not just non-negative values). Replacing b by n and sending 

a ~ -oo,  we get 

H~(P "+I [ P~no. V Qn_oo ) >_ h(P) 

= Hf~( P"+' I P--"oo) 

>_ Hi,(P "+1 ] P._",= V Q"--oo) " 

Hence the equality H~(P "+1 ] Pl"oo V Q"--oo) = Hi,( P"+l ] P--"¢o) holds, so that 

/% is pre-unilateral in the two-sided sense. 
Lastly, for the third stage of the proof, note that by Claim 10, almost every 

ergodic component of/% is pre-unilateral. Also note that since/% is e-tight, a 

positive fraction of its ergodic components are e-tight. For, if we write/2 = 

fA. d~, as in the proof of Claim 10, then we have/%(P zx Q) = fA,~(P A Q) da. 
If/%(P&Q) _< e, then certainly Aa(PzxQ) <_ e for a set of tr's of positive measure. 

Thus,/% has an e-tight pre-unilateral ergodic component, proving: 
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JOINING LEMMA: I f  Q, m O is a mixing (anite-state) Markov chain and e > O, 
then there exists 6 > 0 such that for any process P, mp satisfying 

1 
(a) I dist Pg - dist Q~ I < 6 a=d 

(b) Ih(P)- h(Q)l < 6, 

there exists an ergodic (two-sided, stationary) e-tight pre-un//atera/joining of 

P, rnp and Q, mo. That is, every mixing Markov chain is UFD. n 

5. Conclusion of  the  P r o o f  

Let P, mp be an ergodic process and Q, mQ be a UFD process with h(Q) < 
h(P). The Improvement Lemma says that every neighborhood of an ergodic 
pre-unilateral joining of P, mp and Q, rnQ contains an ergodic pre-unilateral 
joining #' with H~,,(Q I p _ o )  < r}. More precisely: 

IMPROVEMENT LEMMA: Given an ergodic pre-unilateral joining # of P, mp 
and Q, mQ, and given any r > 1 and any e,7/ > 0, there exists an ergodic 

pre-unilateral joining #' of mp and m O such that 

1 
I dist . ,  (P V Q)~o -1 - d i s t .  (P V Q)~o -1) I < e 

and 
HI,'(Q I P- 0 )  < ,7. 

Proof." We may assume r > 2. Given #, r, e, and ~/, take g so small that rd  < e/2 

and 

v(Q zx ~)  < e' implies H,(Q i Q) < T1 

for all partitions Q with #(Q) = #(Q) and all measures u on Q × Q (the existence 
of such an d follows from Claim 7). Take 6 <_ 6(d) (with 6(.) defined as in the 
Joining Lemma) satisfying 0 < 6 < e/2, and apply the Copying Lemma: there 
exists (~ C Pflco such that 

1 
(20) ~ I dist, (P V ~))%-I _ dist, (P V Qy0 -1 I < 6 

and ]h(Q) - h(Q)l < & Since (P V 0)~0 -1 and (P V Q)~0 -1 refine Q~ and Q~ 

(respectively), inequality (20) implies 

1 
I d st. - a s t .  001 I < 6 .  
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Therefore, if we let rhQ denote the restriction of/~ to Q_°°o¢ , the hypotheses of the 
Joining Lemma are satisfied, and there exists an ergodic d-tight pre-unilateral 
joining u of Q, fftQ and Q, mQ. 

Regarding/J as a measure on P-~oo V {~_°°oo V Q_°°oo, let/~ denote the restriction 
of ~t to P _ ~  V Q_°°oo. Since/J is ergodic, so are p and fftQ. Since Q c P__°oo 

modulo g, we get (~°oo C P__°oo, whence P3 ° ± 4)°oo I P--°oo trivially, so that/~ is 
a pre-unilateral joining of mR and fftQ. Let ~r be the conditionally independent 
joining of/~ and v over thQ (see Fig. l(a)). We get 

(since/~ is pre-unilateral), 

P7 ± Q2oo I P_~ 

0,7 ± Q% i 

(since u is pre~unilateral), and 

P-% ± Q-% I Q-oo-°° 

(since ~r is the conditionally independent joining of/~ and u). These three facts 
are easily shown to imply 

P 7  ± (Q v Q)_°oo I P-°oo , 

so that r is a pre-unilateral joining of P, m p  and (Q, v Q), v. Let A be art ergodic 
component of 7r; since/5 and v are both ergodic, the diagram in Fig. l(b) applies 
almost surely. Furthermore, since Ir is a pre-unilateral joining of mR and u, 

Claim 10 implies that A is pre-unilateral also (provided we chose A outside a set 
of bad ergodic components of measure 0). 

Modulo A, we have 

+ P ~  _L ((~ V Q)__°oo I P°~o and po~ ± QOo I P-°oo, 

so that the restriction/z* of A to (P V Q)_°°oo is an ergodic pre-unilateral joining 

/ \_/',, /"\j\ 
mp mQ rnQ rnp rnQ mQ mp mQ 

(a) (b) [c) 

Fig. I. 
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of P, m p  and Q, mQ, (see Fig. l(c)). Also, 

1 
I distx (P V Q)r0-1 - distx (P V Q)ro -1 

1 
= ~ Z IX(A) - A(A)I 

A~(PvQ)'~ ~ 

(here .4 denotes the atom of 

(P V O)~0 -1 corresponding to A) 
1 

_< ~ ~ ~(A ~i) 
Ae(PvQ)'~ * 

1 
--< r" 2B~ , ,Q  A(B" B) 

(by stationarity) 
1 

= r . ~  Z A(CA~)  (sic) 
CEQ 

= , . .  , , ( Q  I, ~) 

g r .  e I (since v is el-tight) 

< el2 , 

where the equality marked "sic" holds because B and B are in the same compo- 
nent of P. Therefore 

1 
I dist . , (P V Q)~-I _ distg(P V Q)~-I I 

1 
-< 5 [ distj.,(P V Q);-1 _ distj,(P V ~)~-1 [ 

1 +~ 
1 
2 
1 +~ 

< 

[ dist . (P V - ~-I Q)0 - distu(P V Q)g-l[ 

[ dista(P V Q)g-1 _ dista(P V Q)g-11 

] dist~,(P V O)g-1 _ dish,( P V Q)g-l[ 

e/2 + 6 (by the previous inequality and (20)) 

< £, 
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Lastly, we have 

H~,,(Q ] P°__oo = Hx(Q ] P_°~o) 

< Hx(Q v (2 I P°-oo) 

= Hx(Q I (2 V P_°oo ) (since Hx((2 I P-°oo) = 0) 

< H (Q I (2) 
= H~(Q I (2) 

< T/ (since v is e' - tight). 

o 

COROLLARY 1: Given an ergodic pre-unilateral joining I~ of P, m e  and Q, m 0 
and given T 1 > O, every distribution neighborhood of I ~ contains an ergodic pre- 

unilateral joining #' such that H~,,(Q [ P__°oo ) < rl. 

Proof: Given an open set U containing the measure/~, there exist r > 1 and 
> 0 such that the "r, e-ball" about/~ lies in U. Apply the previous result, o 

COaOLLAaY 2: The set of  joinings !~ satisfying H~,(Q ] p o  ) = 0 is dense in 
the set of ergodic pre-unilateral joinings. 

Proof." Let/~o be an ergodic pre-unilateral joining, and let U0 be some neighbor- 

hood of/~o. We must find/~oo E U0 satisfying Ht,.o(Q [ P_°oo ) = 0 (such a/~oo is 
automatically an ergodic pre-unilateral joining). To do so, we iteratively define 
jul,/J~, ... as follows. Suppose measures/q and open sets Ui have been defined for 

all i < k. By Corollary 1, there exists an ergodic pre-unilateral joining/~k E Uk-1 

with H~,~ (Q [ P_°oo) < 1/k. Since the distribution topology is metrizable, there 
exists a neighborhood o f / ~  whose closure lies in Uk-1; and by semi-continuity 
(Claim 8), there exists a neighborhood of/~k in which H(Q [ p _ o )  < 1/k. In- 
tersecting these two sets, we get a neighborhood Uk of/~k such that the closure 

Uk lies in Uk-1 and 

H ~ ( O l P _ ° ) < l / k  for a l l / J E U k .  

In this way we get a nested sequence [To D U1 D U~ D . . .  of open sets, each 

containing the closure of the next, such that 

Ht,(Q I V°oo) < 1/n for all/~ e U , .  

By compactness (Claims 6 and 9), there exists 
oO Oo 

n ~ l  n~O 

Since H~o o (Q [ P_°oo ) < 1/n for all n, we have H~o ~ (Q [ P_°oo ) ~ O, as desired, o 
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Remark: The preceding demonstration is nothing more than a proof of the fol- 

lowing variant of the Baire category theorem for complete separable metric 

spaces: Given a set E and a set O not necessarily contained in E, say that 

O is "dense in E" if every open set that meets E also meets O fl E. If O1, O2,. . .  

are open sets dense in E, then their intersection is non-empty, and if moreover 

f'],,°°__ 1 0 ,  lies in E, it is dense in E. 

COROLLARY 3: The set ofjoinings p satisfying Hz(Q I P-°oo) = 0 is non-empty. 

Proof: Corollary 2 says that the set of joinings p satisfying Ht,(Q [ p _ o )  = 0 
is dense in the set of ergodic pre-unilateral joinings, so it suffices to show that 

the set of ergodic pre-unilaterai joinings is non-empty. But this is clear; e.g., the 

product joining mp x mQ is an ergodic pre-unilateral joining, n 

Hence we have shown: 

THEOREM: I[ P, mp  is an ergodic process and Q ,mq  is a mixing Markov chain 
(or other UFD process) such that h( Q ) <_ h( P ), then Q, m¢ is a unilateral factor 
o[ P, mp.  t] 

6. R e m a r k s  

Let us say that a process Q, mQ is inherent ly  uni la tera l ly  codable  if for all 

processes P, rap, Q, mQ is a factor of P, mp if and only if it is a unilateral factor 

of P, rap. Sinai's work [15] showed that every independent process is inherently 

unilaterally codahle, and Ornstein and Weiss [9] extended this result to the class 

of Markov chains with all transition probabilities positive. The current article 
further extends this result to all mixing Markov chains. Also, by Claim 4 of 

section 2, all zero-entropy processes are inherently unilaterally codable. 

It would be nice to have some negative results to counter-balance these, i.e. 
examples of processes that are not inherently unilaterally codable (no such ex- 

amples are currently known). At the same time, one could hope for further 

progress in the positive direction, showing that ever-more processes are inher- 

ently unilaterally codable. 

One easy extension of the theorem proved here is to the class of multi-stage 

mixing Markov chains. Let Q, mQ be an m-stage Markov chain; then Q = 

Q_°m+ 1 is a Markov partition of the process Q, mQ, so by our main theorem, 

if P, mp is any process with h(P) > h(Q), there exists a joining p such that 

0-°oo C P_°oo modulo p. But since Q_°oo = Q°oo , this p gives a unilateral factor 

map from P--%o to Q2oo. 
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A less trivial extension is to the class of non-mixing Markov chains. Suppose 

Q, mQ is an (irreducible) Markov chain with minimal period d; we would like 

to know that if P, mp is any process with entropy > h(Q) and with the d-point 
cycle as a factor (i.e., with the dth roots of unity in its discrete spectrum) then 
Q, mQ is a factor of P, rap. To this end, we must make some modifications in 

the proof of the main theorem - -  more specifically, in the copying and joining 
constructions (sections 4 and 5). 

Fix P, m/, and Q, mQ as in the claim, living on the spaces X and Y, respec- 

tively. Since P, mR and Q, mQ have the d-point cycle as a factor, there exist 

par t i t ionsP = {P(i) : 1 < i _< d} o f X  a n d Q  = {Q(i) : 1 <_ i < d} of Y 

such that TP(i) = P(i+I) and T-Q(i) = Q(i+I) for all i (with i + 1 interpreted 

modulo d); moreover, since Q, mQ is a Markov chain, we may suppose Q c Q, 

so that the states of the Markov chain are divided into d classes in the usual 

way. Since h(P) = 0 and P is a generating partition, we have P C P_°oo; hence 
(P V P)_°oo = p _ o ,  and for purposes of constructing a unilateral coding we may 

as well suppose that P refines P (if not, replace P by P V P). 
To get a suitable copying construction, one should choose a Rokhlin base 

E that is confined entirely to a single P(O" Then the return-time from E to 
itself is always a multiple of d, and it is possible to choose a P°oo-measurable 

approximation to Q (call it Q) such that Q, mQ not only approximates Q, mQ 

in distribution and entropy but also has the property that class i symbols of 0 
can only be followed by class i + 1 symbols (modulo rhQ and modulo d). 

Such a Q, mQ is grist for the mill of a modified joining lemma. The key point 
is that, relative to the periodic factor (of period d) that it has in common with 
Q, r~Q, the process Q, mQ is uniformly mixing, so that the iterative construction 
of a non-stationary one-sided joining goes through almost exactly as before. It is 

only necessary to verify that the d-point factors of Q, mQ and Q, mQ are forced 

to remain in sync; the other details are unaffected. 
As a Final remark, it is worth noting that the results of this paper translate 

naturally into the category of endomorphisms of a measure space. In this setting, 

the full a-algebra P_C~o is replaced by the one-sided a-algebra po~ = V~0 T- IP ,  

and the natural notion of a "factor map" from P, m/, to Q, mQ is a measure- 
preserving shift-commuting map from p~o to Q~O (not necessarily invertible). 

The task of Finding a factor map is reducible to that of Finding a partition 0 C 

po~ such that the Q-process obeys the same statistical law as the Q-process. 
This is just like the unilateral coding problem, except that the roles of past and 
future have been exchanged. In the case of Markov chains, this time-reversal 

doesn't matter (a retrograde Markov chain is just another Markov chain); so we 
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conclude that  a mixing Markov endomorphism is a factor (in the endomorphism 

sense) of every ergodic endomorphism of greater or equal entropy with a finite 

generating partition. In particular, two one-sided mixing Markov processes of 

the same entropy are "weakly isomorphic" (mutual factors). 
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